Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.
Source:R/plot.mlpsa.difference.R
mlpsa.difference.plot.Rd
Creates a graphic summarizing the differences between treatment and comparison groups within and across level two clusters.
Usage
mlpsa.difference.plot(
x,
xlab,
ylab = NULL,
title = NULL,
overall.col = "blue",
overall.ci.col = "green",
level2.point.size = NULL,
level1.points = TRUE,
errorbars = TRUE,
errorbars.adjusted.ci = TRUE,
level2.rug.plot = TRUE,
jitter = TRUE,
reorder = TRUE,
labelLevel2 = TRUE,
sd = NULL,
xlim,
...
)
Arguments
- x
the results of [mlpsa()].
- xlab
label for the x-axis, or NULL to exclude.
- ylab
label for the y-axis, or NULL to exclude.
- title
title of the figure, or NULL to exclude.
- overall.col
the color of the overall results line.
- overall.ci.col
the color of the overall confidence interval.
- level2.point.size
the point size of level 2 points.
- level1.points
logical value indicating whether level 1 strata should be plotted.
- errorbars
logical value indicating whether error bars should be plotted for for each level 1.
- errorbars.adjusted.ci
whether the Bonferroni adjusted error bars should be plotted (these will be dashed lines).
- level2.rug.plot
logical value indicating whether a rug plot should be plotted for level 2.
- jitter
logical value indicating whether level 1 points should be jittered.
- reorder
logical value indicating whether the level two clusters should be reordered from largest difference to smallest.
- labelLevel2
logical value indicating whether the difference for each level 2 should be labeled.
- sd
If specified, effect sizes will be plotted instead of difference in the native unit.
- xlim
the limits of the x-axis.
- ...
currently unused.
Examples
if (FALSE) { # \dontrun{
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
mlpsa.difference.plot(results.psa.math, sd=mean(student.party$mathscore, na.rm=TRUE))
} # }