This function will perform phase II of the multilevel propensity score analysis.
Source:R/mlpsa.R
mlpsa.Rd
The ci.adjust provides a Bonferroni-Sidak adjusted confidence intervals based on the number of levels/clusters.
Usage
mlpsa(
response,
treatment = NULL,
strata = NULL,
level2 = NULL,
minN = 5,
reverse = FALSE,
ci.level = 0.05
)
Arguments
- response
vector containing the response values
- treatment
vector containing the treatment conditions
- strata
vector containing the strata for each response
- level2
vector containing the level 2 specifications
- minN
the minimum number of subjects per strata for that strata to be included in the analysis.
- reverse
reverse the order of treatment and control for the difference calculation.
- ci.level
the confidence level to use for confidence intervals. Defaults to a 95% confidence level.
Examples
if (FALSE) { # \dontrun{
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.colnames)
data(pisa.psa.cols)
mlctree = mlpsa.ctree(pisana[,c('CNT','PUBPRIV',pisa.psa.cols)], formula=PUBPRIV ~ ., level2='CNT')
student.party = getStrata(mlctree, pisana, level2='CNT')
student.party$mathscore = apply(student.party[,paste0('PV', 1:5, 'MATH')], 1, sum) / 5
results.psa.math = mlpsa(response=student.party$mathscore,
treatment=student.party$PUBPRIV,
strata=student.party$strata,
level2=student.party$CNT, minN=5)
results.psa.math
summary(results.psa.math)
} # }