Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.
Source:R/plot.loess.R
loess.plot.Rd
Loess plot with density distributions for propensity scores and outcomes on top and right, respectively.
Usage
loess.plot(
x,
response,
treatment,
responseTitle = "",
treatmentTitle = "Treatment",
percentPoints.treat = 0.1,
percentPoints.control = 0.01,
points.treat.alpha = 0.1,
points.control.alpha = 0.1,
plot.strata,
plot.strata.alpha = 0.2,
...
)
Arguments
- x
vector of propensity scores.
- response
the response variable.
- treatment
the treatment variable as a logical type.
- responseTitle
the label to use for the y-axis (i.e. the name of the response variable)
- treatmentTitle
the label to use for the treatment legend.
- percentPoints.treat
the percentage of treatment points to randomly plot.
- percentPoints.control
the percentage of control points to randomly plot.
- points.treat.alpha
the transparency level for treatment points.
- points.control.alpha
the transparency level for control points.
- plot.strata
an integer value greater than 2 indicating the number of vertical lines to plot corresponding to quantiles.
- plot.strata.alpha
the alpha level for the vertical lines.
- ...
other parameters passed to [ggplot2::geom_smooth()] and [ggplot2::stat_smooth()].
Examples
if (FALSE) { # \dontrun{
require(multilevelPSA)
require(party)
data(pisana)
data(pisa.psa.cols)
cnt = 'USA' #Can change this to USA, MEX, or CAN
pisana2 = pisana[pisana$CNT == cnt,]
pisana2$treat <- as.integer(pisana2$PUBPRIV) %% 2
lr.results <- glm(treat ~ ., data=pisana2[,c('treat',pisa.psa.cols)], family='binomial')
st = data.frame(ps=fitted(lr.results),
math=apply(pisana2[,paste('PV', 1:5, 'MATH', sep='')], 1, mean),
pubpriv=pisana2$treat)
st$treat = as.logical(st$pubpriv)
loess.plot(st$ps, response=st$math, treatment=st$treat, percentPoints.control = 0.4,
percentPoints.treat=0.4)
} # }