rf_model <- mldash::new_model(
name = 'randomForest_classification',
type = 'classification',
description = 'Random forest prediction model usign the randomForest R package.',
train_fun = function(formula, data) {
randomForest::randomForest(formula = formula, data = data, ntree = 1000)
},
predict_fun = function(model, newdata) {
randomForest:::predict.randomForest(model, newdata = newdata, type = "prob")[,2,drop=TRUE]
},
packages = "randomForest",
overwrite = TRUE
)
Results in the following file:
name: randomForest_classification
type: classification
description: Random forest prediction model usign the randomForest R package.
train: function (formula, data)
{
randomForest::randomForest(formula = formula, data = data,
ntree = 1000)
}
predict: function (model, newdata)
{
randomForest:::predict.randomForest(model, newdata = newdata, type = "prob")[,2,drop=TRUE]
}
packages: randomForest
note:
Note that for classification models, the run_models()
function will ensure that the dependent variable is coded as a factor.
If the model assumes another data type (e.g. TRUE or FALSE) it will need
to convert the variable. Otherwise, the data files (read in by the
read_data()
function) should ensure all independent
variables a properly coded.